If You Are Encountering?
Would You Like?
Would You Like In-Process Quality Monitoring?
Does Visibility Into Your AM Build Interest You?:
FABRISONIC PROVIDES THE PLATFORM TO HELP YOU DO THAT
Introducing the SmartPlateTM
What is a SmartPlateTM
The SmartPlateTM is a build plate with sensors embedded into it that is made to your specifications. It can extract data from the sensors for real-time or post-processing analysis.
Want To See One
Fabrisonic has built a SmartPlate for several customers customized to collect the data they need!
The SmartPlate pictured has optical strain gauges and thermal sensors built into the metal. The printed geometry on top was built using Powder Bed Fusion while simultaneously recording strain/time and temperature/time data. Click here to watch the real-time data that displays the temperature and surface strain video.
How Do We Do It?
Fabrisonic starts with a billet build plate and mills channels in locations where sensors are to be embedded. Sensors are placed in the milled cavities, and Ultrasonic Additive Manufacturing is used to print solid metal over the sensor. The low-temperature process does not harm the sensors; thus, the metal has continuous, contiguous, and direct contact with these sensors. When the product is completed, the customer has a fully consolidated metal plate with integral sensors buried within it.
Welding Metals Without Melting?
Ultrasonic metal welding has been around since the 1950s with modern applications in everyday welding of battery tabs, thin foil packaging, and even electronic wires. An ultrasonic weld operation begins by pressing a thin metal foil onto another metal component (foil or baseplate). While under a constant force, ultrasonic vibrations are applied to cause scrubbing of the mating faces. This shearing motion cleans off surface oxides through friction to allow direct contact of pure metal on pure metal. For all metals, the bonding temperature is significantly below their respective melting temperature. The result is an atomic bond between the two metals with minimal heating, leaving the metals in a solid state. The heat and plastic deformation promote diffusion and recrystallization at the interface of the two metals. This process results in a true metallurgical bond. Ultrasonic welding can be accomplished at very low temperatures and without special environments. In using aluminum, for example, this peak temperature is always below 250 °F. If you are interested in more information, please read the article Ultrasonic Additive Manufacturing.
Where Did The Idea Of A Smart Build Plate Come From?
One of our close collaborators at EWI posed a challenge to Fabrisonic. “How can we measure the loads going through the build plate during an AM process?” Fabrisonic had built a reservoir of knowledge in embedding sensors and was working on embedding strain sensors in aerospace parts. We suggested we build a build plate using our UAM 3D printing technology and incorporating embedded sensors. Fabrisonic proposed collaborating with EWI (PBF research) and Luna Innovations (Fiber Optic Sensors) to design and build an instrumented PBF build plate. The challenge was accepted and then solved!
To test the concept, the team put the SmartPlateTM in EWI’s PBF machine and began a PBF build that included “highly problematic features.” The team found that the device picked up significantly more information from this initial build than the bulk stress state. Among some of the additional data that was uncovered were:
Show And Tell!
This video shows actual strain-time plots resolved in the x-y plane (left) and the raw data along the length of the fiber (right). These colorful strain-time histories easily communicate what is happening in the build. Further data analysis can provide a deep understanding of the quality of the build by:
Fabrisonic continues to evolve the concept of the SmartPlateTM by adding various sensors, including thermocouples and vibration sensors. The team recently upgraded an EOS M290 for further investigations for quality monitoring.
Just like the ultrasonic vibrations at the heart of our 3D metal printing technology, the Fabrisonic team has been doing some moving and shaking of our own.
Fabrisonic is excited to announce that we’ve moved to a new, larger, state-of-the-art facility in Lewis Center, Ohio!
Fabrisonic has been incubated by EWI at its facility in Columbus, on the campus of The Ohio State University since 2011. As the business has grown, we’ve developed a need for additional space to expand and make room for more people, machines and expanded parts production.
The Fabrisonic team and our four UAM machines, including one new machine currently in assembly, have relocated to a facility that will position us for massive growth in 2023. Our new 30,000 sq. ft. facility is located at 7719 Graphics Way, Suite A, Lewis Center, OH 43035.
We’ve also upgraded our entire IT infrastructure to a higher security platform that meets government sensitive data requirements.
“The across-town move does not adversely impact Fabrisonic employees, allowing the company to maintain access to its current talent pool and attract new employees to accommodate growth,” said Mark Norfolk, Fabrisonic president and CEO. “Although it’s time for us to spread our wings and move out of mom and dad’s basement, we’re staying close to our Buckeye engineering roots.”
We’re thankful to Fabrisonic’s Board of Directors for recognizing our success and supporting the company’s plan to meet increased customer demands.
More than a decade later, our Ultrasonic Additive Manufacturing process is still shaking up the industry. Want to see UAM in action at our new facility? Contact us to schedule a tour!
Fabrisonic is excited to announce that our own Dan King has been featured on the Society of Manufacturing Engineers (SME)’s “30 Under 30” list!
In 30 under 30, SME Media recognizes 30 individuals under the age of 30 that are leading the manufacturing industry into the future. These young trailblazers exemplify extraordinary promise in manufacturing and the STEM (science, technology, engineering and mathematics) skills that underpin the discipline, plus much more.
On the list this year is Dan King, whose day job includes building Fabrisonic’s patented 3D metal printers as well as educating our customers on design for additive manufacturing. Dan says he’s thrilled to be working at Fabrisonic because the small startup atmosphere allows him to take on more responsibility than his peers at larger companies.
Dan is among many young pioneers whom SME believes have the potential to be leaders in manufacturing. The team at Fabrisonic could not agree more!
“The people honored here are making big contributions not only to the manufacturing industry but also groups that rely on volunteers,” the magazine reads. “They are advancing manufacturing through research. They are helping startups thrive. They are saving companies money and inventing new technology. They are reaching other engineers-in-training.”
Read more about Dan and the whole 30 under 30 2022 class here.
Fabrisonic is setting trends and this is the second Fabrisonic engineer to be recognized by SME’s 30 under 30. Click here to read about Justin Wenning who was recognized in 2016.
We were excited to announce that Fabrisonic’s patented Ultrasonic Additive Manufacturing process (aka Ultrasonic Consolidation) has been recognized by ASM International with this year’s Engineering Materials Achievement Award! This award recognizes outstanding achievement in materials or materials systems relating to the application of knowledge of materials to an engineering structure or to the design and manufacture of a product.
This year’s award is for the development and commercialization of the ultrasonic additive manufacturing (UAM) process. Fabrisonic congratulates all of the team members who have worked to bring this technology to the market. Through the collective effort of Solidica, EWI, Fabrisonic, and various partner organizations, we have made significant advancements in UAM throughout the past two decades.
Mark Norfolk, Fabrisonic president and CEO accepted the award at the ASM Awards Dinner on Tuesday, September 13th in New Orleans, LA during IMAT22.
Special thanks to the ASM International Board of Trustees who named the award program recipients for 2022. The awards program recognizes achievements of members of the materials science and engineering community.
To read the full article, click here.
Meet the newest member of the Fabrisonic team, Lance Dumigan, Business Development Manager.
Lance says his career has taken some unexpected turns that have put him exactly where he was meant to be.
Early Years
At just four years old, he became determined to become a pilot after an airplane ride with his uncle. Later in life, he learned that the best path was to fly for the U.S. military. The U.S. military only accepted pilots with a bachelor’s degree. Based on a short conversation with his cousin, a refrigeration technician student, and his friendship with his physics teacher in high school, he decided to pursue a degree in electrical engineering at Rochester Institute of Technology. Singularly focused on being an airline pilot, an electrical engineering degree would be a solid “plan b” if things did not work out at flight school.
The Best thing that Never Happened
After college Aviation Officer Candidate School (AOCS) ~ was the basis for the movie “Officer and a Gentleman.” The attrition rate for AOCS was 30%. The Drill Instructor that led his class was renowned for having the highest attrition rate. Not to be deterred, Lance’s class had an attrition rate of 87%. After completing AOCS, Basic Flight School, Intermediate Flight School, and Advanced Flight School, he was awarded his wings and the designation of Naval Aviator in the United States Navy. Joining his squadron as a new Naval Aviator (“Nugget”), he earned the designations of P3 Orion Third Pilot, Second Pilot, Patrol Plane Commander, and Mission Commander. It looked like he was about to realize his lifelong dream of being an airline pilot. The airline industry was in a downturn, and his plan was derailed when neither of the only two (of eleven) airlines hiring would offer him a position. Lance felt like his life had fallen apart. In hindsight, he says this was the best thing that never happened because it led him to the next, most fulfilling, part of his career.
Risk, Reward, and Formation
From that moment, he had to decide what he wanted to do for the rest of his life. Finding a career that was challenging and fun was his goal. With the support of his wife, Lance pursued roles that offered him the greatest opportunities for learning and growth. From sales engineering to direct sales, product marketing, product engineering, channel management, sales management, and sales and marketing management, Lance took on the toughest challenges he could find. Coming from a large family of small business owners, it was in his blood to become an entrepreneur. Lance has started three companies, led strategic initiatives for several businesses, and consulted with many startups and small businesses.
You Always End Where You Belong
Lance was intrigued and excited when the opportunity came along with Fabrisonic, a startup using a unique and advanced technology. He would be able to use everything he had learned over the years to help this company reach its highest potential.
“Winning is Team Sport”
Through his years in the industry, he realized that his love for sales is truly about helping people. He thinks that what most people do not realize about sales is that the most challenging negotiations are with your internal team and working with customers is the easiest part.
Lance’s favorite expression comes from a book called “Start with Why” by Simon Sinek. Simon coined the phrase “winning is a team sport.” To Lance, that encapsulates the integrated team concept critical to sales. Being part of an integrated team, your internal team, the customer’s team, and the supplier’s team is the basis for winning.
Outside of work, Dumigan likes to stay busy. He enjoys cooking, spending time with his family, hiking, and walking his dogs near his home in Western New York. He is a patriot who has tremendous respect for the men and women who have and are, serving in the U.S. military.
We’re proud to welcome Lance Dumigan to our team.
To reach Lance Dumigan, email ldumigan@fabrisonic.com or call (585) 770-7112
Fabrisonic’s patented low-temperature Ultrasonic Additive Manufacturing (UAM) process utilizes ultrasonic welding to 3D print metal parts. Although our process does not use powders, we have lots of friends in industry that use powder based processes. Read “Not ALL 3D Printers Use Powder” for a more in depth break down of the difference between UAM and powder bed fusion. One of the biggest complaints we hear from our powder brethren is consternation around build plates:
During one such conversation with our colleagues at EWI, he stated, “How can we measure the loads going through the build plate?” Since Fabrisonic was working currently on embedding strain sensors in aerospace parts, we suggested that we 3D print a build plate with embedded sensors. And thus began the journey to build a ‘smart baseplate’ or ‘smart build plate’.
Fabrisonic teamed with EWI (PBF research) and Luna Innovations (Fiber Optic Sensors) to design and build an instrumented PBF build plate for the Defense Logistics Agency (DLA) under a Phase I STTR. Fabrisonic used its solid-state 3D process to print a plate with a single embedded fiber optic sensor. The fiber optic was embedded with a specific undulating pattern that allows resolving the strain across the entire build plate. The team put the smart baseplate in EWI’s PBF machine and attempted a build that included ‘problematic’ features. From this initial build the team found that the device picked up significantly more information than just bulk stress state:
The video above shows true strain-time plots resolved in the x-y plane (left) and the raw data along the length of the fiber (right). These colorful strain-time histories easily communicate what is happening in the build. However, further data slicing can provide a deep understanding of the quality of the build:
Figure 1 – As a crack forms and propagates it is normal to see a transverse compression to form at the point of separation (left). Strain vector changes also highlight certain flaws (right).
Based on the preliminary results, the team feels that this approach could be used to monitor quality during PBF builds:
Fabrisonic continues to evolve the concept of the Smart Baseplate with additions of a variety of sensors including thermocouples and vibration sensors. The team recently upgraded an EOS M290 for further investigations for quality monitoring.
Fabrisonic was recognized in the latest release of NASA’s Spinoff 2022 publications for its successful technology and capability developments in support of NASA’s Jet Propulsion Laboratory.
The article, A Novel additive manufacturing technique combines metals and embeds sensors details how Fabrisonic’s Ultrasonic Additive Manufacturing process could be used to create a lighter weight, higher performing heat exchanger.
“The SBIR program is a godsend to small businesses as it allows us non-dilutive funding to perfect our craft,” comments Mark Norfolk, CEO, Fabrisonic
Excerpt:
A burst water main is always a mess, but a pipe that fails in space can be mission-ending. That’s why NASA technologists must make hardware as reliable as possible.
This challenge spurred Scott Roberts, a technologist at NASA’s Jet Propulsion Laboratory in Southern California, to turn to a new kind of welding in the 3D printing industry. He thought ultrasonic additive manufacturing (and Fabrisonic) could improve spacecraft components’ reliability. Now one company that used the technique to build parts for Roberts is manufacturing parts for industries from aeronautics to oil drilling. Click here to read the entire article
Meet Dr. Jason Riley: leader, learner, innovator, outdoor adventurer. And now, he’s the proud Chief Operating Officer of Fabrisonic. Dr. Riley has a diverse career and background, and has taken a nontraditional route on his journey to Fabrisonic and into the advanced manufacturing field.
He received a BA in Criminology from The Ohio State University in 2003. After graduating, he was commissioned as Second Lieutenant in the Marine Corps, where he served on active duty in Iraq and Afghanistan on three separate deployments. Over the next few years, Dr. Riley completed his MA in biblical studies from Ashland Theological Seminary, with a detour in the middle of his studies to return to active duty from 2009 to 2011. He has also graduated from the Marine Corps University Expeditionary Warfare School and Command and Staff College.
This activation brought him and his family to California, where he taught an emerging concept to Marine Corps units throughout the West Coast. Upon completing this mission, he began his Ph.D. program in theology from Fuller Theological Seminary. In this stage of his journey, Dr. Riley co-wrote and published a book about his Marine Corps experiences, and he began a teaching career at the graduate-student level. He continues to serve in the Marine Corps Reserve today. Dr. Riley shared, “The 18+ years I have spent in the Marine Corps, both active duty and reserve, have made me who I am and have given me numerous skills that I bring to my civilian leadership and operations roles.”
In 2018, he had the opportunity to join Amorphology, Inc. a materials science company as employee number one. Dr. Riley said, “I primarily capitalized my leadership and management experience and skills to get this JPL-Caltech spinout company off the ground.” There, he led efforts to build out the company’s 14,000sf end-to-end R&D and manufacturing facility. He was promoted to Chief Operating Officer and led the company until he joined Fabrisonic in 2021.
In the Industry
Dr. Riley is excited to work with the team at Fabrisonic. He shared, “I enjoy working with highly-skilled, motivated team members, learning new things, and being a part of accomplishing challenging projects on a day-to-day basis. The team here at Fabrisonic is awesome.”
Dr. Riley has been a part of two advanced manufacturing start-ups over the past four years. He continued, “Fabrisonic has an incredibly promising future in the advanced manufacturing ecosystem… We need more companies like this to advance our manufacturing capabilities here in the U.S.”
For Dr. Riley, there is no “typical” workweek. And he loves that! He said, “Every week we are working on new projects, and encountering and overcoming new challenges.” Advanced manufacturing and additive manufacturing is expanding at a rapid rate. New technologies are being developed, old technologies are advancing; new companies are arising, and existing companies are growing or being acquired.
Dr. Riley shared that anyone going into the industry should be “adaptive, willing and ready to learn, and willing to get their hands dirty and pitch in where necessary.”
Now for the fun stuff…
In Dr. Riley’s free time, he loves spending time with his wife, Angie, his two kids, Eliana and Micah, their cat, Shilah and their German Shorthaired Pointer, Atlas. They are big explorers and adventurers. When they lived in Southern California, they regularly went camping in the Sierras or the desert. In 2019, they decided to spontaneously travel to Alaska for Christmas, where they learned how to ski, dog-sled, and attempt to enjoy the -20 degree weather.
In 2020, they took an 8-day “Thankscamping” trip to Arizona, and in 2021, they spent a week on an off-road trip through several Utah national parks. Over the past few years, they have enjoyed 5 to 9 mile hikes with their 8 and 11 year olds, hiking in elevations between 6,000 and 11,000 feet. Along the way, their 2006 Toyota Sequoia—which Dr. Riley built out—has become part of the family. It is complete with an Old Man Emu/Dobinson suspension, BFG A/T tires, dual battery system, and sliders. It has brought them to some incredible places, like Canyonlands National Park in Utah, where they were stuck in the mud and had to winch themselves out.
Dr. Riley even shared that when he was a kid, he wanted to be Jean-Claude Van Damme or a major league baseball player. He said, “So, if there is anyone out there willing to let me play one inning of major league baseball, that would be awesome.”
We’re proud to welcome Dr. Jason Riley to our team.
Today I want to share with you a sad story of toil and defeat. Of a hero’s journey through hard work, a long road, dead ends, and backtracking. Don’t worry, dear reader, it ultimately has a happy ending.
Fabrisonic has been a spinout company of EWI since 2011 and our patented ultrasonic additive manufacturing technology has been in development even longer. With any new manufacturing technology, a critical hurdle is in figuring out the key capabilities and use cases. After ten years in business, we now know that the most critical capabilities are:
For this latter capability, we developed much of this technology while making heat exchangers with NASA JPL.
We started out making very simple channels. Over time, we were able to develop the process to produce increasingly complex heat exchangers (Figure 1).
After many trials and false starts, eventually, we learned how to produce wide channels with our proprietary support material (patent pending). This has enabled us to be able to produce very large heat exchangers (Figure 2), waveguides, and other types of items with complex interior geometries. Ultrasonic Additive Manufacturing (UAM) is often used in such applications as a replacement process for brazing or explosion welding.
The NASA SBIR projects led to the exciting opportunity to be able to produce a VAMP (vertical avionics mounting plate) heat exchanger for the Mars 2020 Rover mission (Figure 3). The original design was built by hand using numerous components including bolts and epoxy to glue tubing to a frame. That design weighed 4 lbs. and took over 2 months to produce. The new 3D printed version using Fabrisonic’s UAM technology was 1 piece, had over a 30% weight reduction, and could be produced in 3 weeks with no tooling and no post-processing.
The next step was testing. The parts were nondestructive tested, helium leak tested to better than 1e-9 scc/s GHe, vibration tested, and thermal cycled. Sample heat exchangers were even burst pressure tested to over 6000 psi. The UAM heat exchanger passed everything that was thrown at it. The VAMP heat exchanger was thoroughly CT scanned (Figure 4).
Awesome! Right?
Not so fast.
In the end, it was determined a part made with a new manufacturing process was too risky for NASA’s one shot with the Mars Rover Perseverance mission. There just wasn’t enough statistical materials data to be 100% confident that there was zero risk of failure. Ultimately, Perseverance was launched July 30, 2020, without its UAM heat exchanger and relied on the heavier design based on the traditional tube bonded to plate technology. It landed on February 18, 2021, and continues to do its work on Mars.
That might be the end of the story, except that Fabrisonic’s ethos is based on perseverance just like the name of the Mars Rover. While we didn’t make that mission, we are continuing in our efforts to be able to provide NASA as well as any commercial customers with the data that they need for having statistically confident design allowable data.
To that end, we have recently begun, along with America Makes, a project to create just that set of data for 6061 aluminum. America Makes is the national accelerator for additive manufacturing and 3D printing. It is part of Manufacturing USA, an initiative to coordinate public and private investment in emerging advanced manufacturing technologies. There are 228 member organizations from the government, academia, non-governmental organizations, and industry, including large OEMs as well as small businesses and startups.
The project awarded from the 2021 Open Project Calls is partnering with The Ohio State University, 3Degrees, and Westmoreland Testing Lab. The announcement (Figure 5) also shows the other project leads including Penn State, ASTM International, and Boeing. We are honored to be included in such good company.
The Fabrisonic team’s project is titled Ultrasonic Additive Manufacturing Technical Data Package Maturation.
What that means is that we are working to meet the aerospace industry’s needs for a Technical Data Package. TDP means having a technical description of an item sufficient to support acquisition, production, engineering, and logistics. One must have enough information to define how something is made and to be confident in its performance.
We are working to create enough data in various print thicknesses and processing conditions to be able to have UAM 6061 in the Metallic Materials Properties Development and Standardization Handbook. This includes characterizing raw material, as printed material, and HIP (Hot isostatic press) and heat-treated to T6 material. We are also starting work on developing an industry standard to cover processing requirements that correspond to the data.
While the project is in its initial stages and runs through the end of May 2022, we look forward to sharing more details on the results at the spring America Makes Technical Review and Exchange (TRX) currently planned for March 22-24, 2022.